
University of Luxembourg
Multilingual. Personalised. Connected.

RepuCoin:

Reputation-based Byzantine Consensus

Jeremie Decouchant,
Joint work with Jiangshan Yu, David Kozhaya, Paulo Esteves-Veríssimo

CritiX, SnT

jeremie.decouchant@uni.lu

RepuCoin: addressing the 51% attack

2RepuCoin: Reputation-Based Byzantine Consensus

RepuCoin: addressing the 51% attack

3RepuCoin: Reputation-Based Byzantine Consensus

RepuCoin – Intuition

4RepuCoin: Reputation-Based Byzantine Consensus

1. Miners gain reputation by contributing
to the blockchain

2. Only top reputed miners can vote
through a BFT protocol (e.g., PBFT)

3. Mis-behaved miners will be punished,
and they lose reputation

4. Leaders are randomly selected from
top reputed miners to propose
transactions

RepuCoin – Increased attack resilience

5RepuCoin: Reputation-Based Byzantine Consensus

Breaking the liveness property:

• For an adversary to build enough reputation takes time

RepuCoin – Increased attack resilience

6RepuCoin: Reputation-Based Byzantine Consensus

• For an adversary to build enough reputation takes time

Breaking the liveness property:

Implementation: BFT-SMaRt (Java)

7RepuCoin: Reputation-Based Byzantine Consensus

A block was discovered in the network

https://github.com/bft-smart/library

The block is added to the blockchain

Block ordering

https://github.com/bft-smart/library

Implementation: BFT-SMaRt (Java)

8RepuCoin: Reputation-Based Byzantine Consensus

3f+1 Miners

Consensus reached when:
- 2f+1 miners agree on a block
- They represent more than two 3rd of the group reputation

https://github.com/bft-smart/library

https://github.com/bft-smart/library

Performance evaluation

9RepuCoin: Reputation-Based Byzantine Consensus

Measure

• Latency

• Throughput

Depending on

• Consensus group size

• Block size

Settings (in the code)

• Limit bandwidth

• Impose network latency

HPC workflow

10RepuCoin: Reputation-Based Byzantine Consensus

1. Find a set of machines on a single cluster

2. Create an interactive job and connect to it

3. Edit BFT-SMaRt’s config files (machines to use and port)

4. Bash: script to run the throughput/latency benchmark
– Kill any java application on the machines

– Launch replicas

– Launch clients

5. Python: collect the results (output file) and plot

$ oarsub –I –l nodes=13,walltime=1:0:0

$ oarsub –C 12345

$ cat $OAR_NODEFILE

$ oarsh –f ${ip_addr} ‘‘cd bftsmart.repucoin; ./runscript > /dev/null 2>&1 &’’ &

Best practices

11RepuCoin: Reputation-Based Byzantine Consensus

• Search for the right code basis
– Your life will be much easier

• Automate everything
– You always think you won’t need to repeat the experiments: wrong!

– The initial additional work is quickly amortized

• Latency vs. throughput experiments are tricky
– The throughput should increase with the load up to a certain point, where the

latency starts increasing

– But too many requests make the applications crash (message queues)

– Find the right number of clients

Lessons learned

12RepuCoin: Reputation-Based Byzantine Consensus

• Estimate the time it takes for your experiment and double it
– Plan ahead

• It is difficult to be on a completely controlled environment
– Change the machines Change your performance

– Are there a lot of jobs ongoing?

• Performance is sometimes difficult to understand
– Example: The performance with 8MB blocks is lower than with 4MB

– I spent a day repeating the experiments and got the same result: I still don’t
explain it

