Parallel and Hybrid Evolutionary Algorithm in Python

E. Kieffer

UL HPC Users’ session -- UL HPC school 2017
Contents

- **Context and motivation**
 - Clustering of the Parkinson Disease Map
 - Bi-level Clustering approach

- **Python tools on the UL HPC Platform**
 - CPLEX solver
 - SCOOP library
 - DEAP library

- **Experiments & Validation**
 - Experiments on the Parkinson Disease Map
 - Comparison with Hierarchical Clustering
CONTEXT & MOTIVATION
Parkinson Disease Map

- Large (hyper-)Graph
- Extract Knowledge
- First experiments with standard Clustering approach

- Hierarchical Clustering
- Several metric (e.g. GO, NET, EU)
- Hard to combine
Bi-level Clustering

- Clustering often based on a two phase algorithm:
 - Find cluster representatives
 - Assign data to clusters

- Generally the same metric is used for both steps

- Consider these two steps as two nested optimization problems with different metrics

- Metric:
 - Euclidean distance
 - Network distance
 - Distance based on Gene/Disease Ontology

- Use Evolutionary Algorithm (EA) to solve the Bi-level Clustering problem

- Use MOEA to detect the number of clusters
Bi-level Optimization

- Bi-levels \leftrightarrow Nested problems

- A problem constraining another one \rightarrow NP-hard even for convex levels

Upper-level

$$\begin{align*}
\min \quad & F(x, y) \\
\text{s.t.} \quad & G(x, y) \leq 0
\end{align*}$$

Lower-level

$$\begin{align*}
\min \quad & f(x, y) \\
\text{s.t.} \quad & g(x, y) \leq 0 \\
\text{s.t.} \quad & x, y \geq 0
\end{align*}$$
Bi-level Clustering

d_{ij}^1 and d_{ij}^2 are respectively the distances considered for the first and second level. The decision variables are:

- $Y_j = \begin{cases}
1 & \text{if point } j \text{ become a centroid} \\
0 & \text{else.}
\end{cases}$

- $X_{ij} = \begin{cases}
1 & \text{if point } i \text{ belongs to cluster } j \\
0 & \text{else.}
\end{cases}$

\[
\min \quad F = \sum_i \sum_j (d_{ij}^1 X_{ij}, \sum_j Y_j)
\]

s.t. \[
\min f = \sum_i \sum_j d_{ij}^2 X_{ij}
\]

s.t. \[
\sum_j X_{ij} = 1 \quad \forall j \in \{1, ..., \sum_j Y_j\}
\]

\[
X_{ij} - Y_j \leq 0 \quad \forall j \in \{1, ..., \sum_j Y_j\}
\]

$X_{ij}, Y_j \in \{0, 1\}$
Parallel and hybrid EA
PYTHON TOOLS ON THE UL HPC PLATFORM
Using CPLEX on the UL HPC

- IBM ILOG CPLEX Optimizer's mathematical programming technology.

- One of the most efficient solver on the market:

 ![Graph comparing solver performance](image)

- CPLEX available for HPC user with IBM Academic Initiative membership
 - Need first to register to the IBM Academic Initiative:
 - https://developer.ibm.com/academic/
 - Forward the membership confirmation mail to the HPC admins

- To use CPLEX on the cluster:
 - `$ module use $PROJECTWORK/cplex/soft/modules`
 - `$ module load CPLEX`
Parallel Evaluations with SCOOP

- Scalable COncurrent Operations in Python
 - is a distributed task module
 - concurrent parallel programming
 - on various environments, from heterogeneous grids to supercomputers

- Command to execute a python script using SCOOP
 - `python -m scoop --hostfile $OAR_NODEFILE -n 16 --ssh-executable "oarsh" hello.py`

- Parameters:
 - `--hostfile`: path to the file contains all hostnames
 - `--ssh-executable`: the command to access nodes (here `oarsh`)
 - `-n`: the number of workers

```python
from __future__ import print_function
from scoop import futures
import socket

def helloWorld(value):
    return "Hello World from{0}".format(socket.gethostname())

if __name__ == "__main__":
    returnValues = list(futures.map(helloWorld, range(16)))
    print("\n".join(returnValues))
```
Example

(testScoop) θ [13:35:46] ekieffer@access(gaia-cluster) clustering> cat OAR.4148736.stderr
./job.sh: line 2: bin/activate: No such file or directory
[2017-05-18 13:31:59,706] INFO Deploying 16 worker(s) over 16 host(s).
[2017-05-18 13:31:59,706] INFO Worker distribution:
 gala-161: 0 + origin
 gala-161: 0 + origin
 gala-162: 0 + origin
 gala-162: 0 + origin
 gala-163: 0 + origin
 gala-163: 0 + origin
 gala-164: 0 + origin
 gala-164: 0 + origin
 gala-165: 0 + origin
 gala-165: 0 + origin
(testScoop) θ [13:35:54] ekieffer@access(gaia-cluster) clustering> cat OAR.4148736.stdout
Hello World from gala-161
DEAP library for Evolutionary Computation in Python

- https://github.com/DEAP/deap
- Rapid prototyping and testing of ideas
- Parallelization mechanism based on SCOOP
- CMA-ES algorithm

```python
from scoop import futures

toolbox.register("map", futures.map)
creator.create("FitnessMin", base.Fitness, weights=(-1.0,))
creator.create("Individual", list, fitness=creator.FitnessMin)

toolbox = base.Toolbox()
toolbox.register("evaluate", benchmarks.rastrigin)
def main():
numpy.random.seed(128)

strategy = cma.Strategy(centroid=[5.0]*N, sigma=5.0, lambda_=20*N)
toolbox.register("generate", strategy.generate, creator.Individual)
toolbox.register("update", strategy.update)

hof = tools.HallOfFame(1)
stats = tools.Statistics(lambda ind: ind.fitness.values)
stats.register("avg", numpy.mean)
stats.register("std", numpy.std)
stats.register("min", numpy.min)
stats.register("max", numpy.max)

algorithms.eaGenerateUpdate(toolbox, ngen=250, stats=stats, halloffame=hof)
```
EXPERIMENTS & VALIDATION
Clustering results
A cluster represents a sample of \(n \) genes from a total population of \(N \) genes. It is known that the considered GO term contains \(m \) genes. What is the probability to have the same \(k \) genes in our cluster and in the considered GO term?

\[
P(X = k) = \frac{\binom{m}{k} \binom{N-m}{n-k}}{\binom{N}{n}}
\]
Bi-level Clustering

Enrichment of Disease Ontology terms
p value cutoff 0.001

distance
- 01_net_go_ward
- 02_eu_go_ward
- 03_eu_net_ward
- 04_clusteringNETEU
- 05_clusteringEUNET
- 06_clusteringGOEU
- 07_clusteringEUGO
- 08_clusteringGONET
- 09_clusteringNETGO
- 10_expert
Conclusions

- Knowledge extraction on the Parkinson Disease MAP
- Bi-level clustering model
- Solve the model with Hybrid and Parallel EA
- Experiments required a lot of resources → UL HPC Platform
 - Hybrid → CPLEX solver
 - Parallel → SCOOP library for parallel evaluations
 - Evolutionary Computation → DEAP library
Questions?

Thank you for your attention.

PS9 (13h30 – 15h30):
Advanced Prototyping with python presented by Clement Parisot