UL HPC School 2017
PS2: HPC workflow with sequential jobs

UL High Performance Computing (HPC) Team
H. Cartiaux

University of Luxembourg (UL), Luxembourg
http://hpc.uni.lu
Latest versions available on Github:

UL HPC tutorials:
https://github.com/ULHPC/tutorials

UL HPC School:
http://hpc.uni.lu/hpc-school/

PS2 tutorial sources:
https://github.com/ULHPC/tutorials/tree/devel/basic/sequential_jobs
Summary

1. Introduction
2. Pre-requisites
3. Exercise 1: Parametric execution of Gromacs
4. Exercise 2: Watermarking images in Python
5. Exercise 3: Advanced use case, using a Java program: "JCell"
6. Conclusion
Main Objectives of this Session

- Run **sequential, parametric programs** on the clusters
- Learn how-to use our set of launcher scripts
- Submit jobs
- use the cluster monitoring tools
 - Ganglia
 - Monika & Drawgantt

Tutorial Notes:

https://github.com/ULHPC/tutorials/tree/devel/basic/getting_started

http://git.io/5cYmPw
1 Introduction

2 Pre-requisites

3 Exercise 1: Parametric execution of Gromacs

4 Exercise 2: Watermarking images in Python

5 Exercise 3: Advanced use case, using a Java program: "JCell"

6 Conclusion
Pre-requisites

Getting started

Connect to the cluster(s)
(laptop)\$> ssh \{iris,gaia,chaos\}-cluster

Send files
(laptop)\$> rsync -avz local_directory \{iris,gaia,chaos\}-cluster:

Retrieve files
(laptop)\$> rsync -avz \{iris,gaia,chaos\}-cluster:path/to/files local_dir

Submit jobs

<table>
<thead>
<tr>
<th>OAR on Chaos/Gaia</th>
<th>Slurm on Iris</th>
</tr>
</thead>
<tbody>
<tr>
<td>oarsub -I program</td>
<td>srun -p interactive [--qos qos-interactive] --pty bash</td>
</tr>
<tr>
<td></td>
<td>sbatch program</td>
</tr>
</tbody>
</table>

H. Cartiaux & UL HPC Team (University of Luxembourg)
UL HPC School 2017/ PS2
Exercise 1: Parametric execution of Gromacs

Summary

1. Introduction
2. Pre-requisites
3. Exercise 1: Parametric execution of Gromacs
4. Exercise 2: Watermarking images in Python
5. Exercise 3: Advanced use case, using a Java program: "JCell"
6. Conclusion
Exercise 1: Parametric execution of Gromacs

Gromacs

GROMACS: GROningen MAchine for Chemical Simulations
versatile package for molecular dynamics, primarily designed for biochemical molecules

- very large codebase: 1.836.917 SLOC
- many applications in the package, several parallelization modes
- **mdrun**: computational chemistry engine, performing:
 - molecular dynamics simulations
 - Brownian Dynamics, Langevin Dynamics
 - Conjugate Gradient
 - L-BFGS
 - Steepest Descents energy minimization
 - Normal Mode Analysis
- **mdrun** - parallelized using MPI, OpenMP, pthreads and with support for GPU acceleration
Exercise 1: Parametric execution of Gromacs

Comparison

2 approaches

- Sequential (loop)
- Parallelized (with GNU parallel)
Exercise 1: Parametric execution of Gromacs

Comparison - Ganglia
Exercise 2: Watermarking images in Python

Summary

1. Introduction
2. Pre-requisites
3. Exercise 1: Parametric execution of Gromacs
4. Exercise 2: Watermarking images in Python
5. Exercise 3: Advanced use case, using a Java program: "JCell"
6. Conclusion
Exercise 2: Watermarking images in Python

Watermark Application

Objective: Apply a watermark to a given set of pictures

- Simple Python script
- Generic parallel launcher
- Distribute the work on several nodes
Exercise 2: Watermarking images in Python

Source image
Exercise 2: Watermarking images in Python

Watermarked image
Summary

1. Introduction
2. Pre-requisites
3. Exercise 1: Parametric execution of Gromacs
4. Exercise 2: Watermarking images in Python
5. Exercise 3: Advanced use case, using a Java program: "JCell"
6. Conclusion
Exercise 3: Advanced use case, using a Java program: "JCell"

Jcell & cGAs

- **JCell**: a Java framework for working with genetic algorithms
 - Ex: Generational algorithm for the Combinatorial ECC problem
- Test the variations of these parameters:
 - *Mutation probability* and *Crossover probability*
Summary

1 Introduction

2 Pre-requisites

3 Exercise 1: Parametric execution of Gromacs

4 Exercise 2: Watermarking images in Python

5 Exercise 3: Advanced use case, using a Java program: "JCell"

6 Conclusion
We have covered one of the most common workflow:

- parametric jobs

Our launchers can be improved!

Perspectives

- Array jobs
- Best effort jobs
- Checkpoint/Restart mechanism
Thank you for your attention...

Questions?

High Performance Computing @ UL
Prof. Pascal Bouvry
Dr. Sebastien Varrette & the UL HPC Team
(V. Plugaru, S. Peter, H. Cartiaux & C. Parisot)
University of Luxembourg, Belval Campus
Maison du Nombre, 4th floor
2, avenue de l'Université
L-4365 Esch-sur-Alzette
mail: hpc@uni.lu

1 Introduction
2 Pre-requisites
3 Exercise 1: Parametric execution of Gromacs
4 Exercise 2: Watermarking images in Python
5 Exercise 3: Advanced use case, using a Java program: "JCell"
6 Conclusion