UL HPC School 2017
PS6: Bioinformatics Workflows and Applications

UL High Performance Computing (HPC) Team
V. Plugaru and S. Peter

University of Luxembourg (UL), Luxembourg
http://hpc.uni.lu
Latest versions available on Github:

UL HPC tutorials:
UL HPC School:
PS6 tutorial sources:

https://github.com/ULHPC/tutorials
http://hpc.uni.lu/hpc-school/

https://github.com/ULHPC/tutorials/tree/devel/advanced/Bioinformatics/
Objectives

Summary

1 Objectives

2 Bioinformatics packages

3 Notes

4 Practical session

5 Conclusion
Objective of this Session

Better understand the usage of Bioinformatics packages on the UL HPC Platform.
Objective of this Session

Better understand the usage of Bioinformatics packages on the UL HPC Platform.

Why Bioinformatics? 3Vs:
Objective of this Session

Better understand the usage of Bioinformatics packages on the UL HPC Platform.

Why Bioinformatics? 3Vs:

- very relevant in the context of the UL/LCSB
Objective of this Session

Better understand the usage of Bioinformatics packages on the UL HPC Platform.

Why Bioinformatics? 3Vs:

- very relevant in the context of the UL/LCSB
- very fast growing domain
Objective of this Session

Better understand the usage of Bioinformatics packages on the **UL HPC Platform**.

Why Bioinformatics? 3Vs:

- very relevant in the context of the UL/LCSB
- very fast growing domain
- very many associated workflows, thus excellent examples
Objectives

Objective of this Session

Better understand the usage of Bioinformatics packages on the UL HPC Platform.

Why Bioinformatics? 3Vs:

- very relevant in the context of the UL/LCSB
- very fast growing domain
- very many associated workflows, thus excellent examples
Objective of this Session

Better understand the usage of Bioinformatics packages on the UL HPC Platform.

Why Bioinformatics? 3Vs:

- very relevant in the context of the UL/LCSB
- very fast growing domain
- very many associated workflows, thus excellent examples
Objective of this Session

Better understand the usage of Bioinformatics packages on the UL HPC Platform.

Why Bioinformatics? 3Vs:
- very relevant in the context of the UL/LCSB
- very fast growing domain
- very many associated workflows, thus excellent examples
Objectives

Objective of this Session

Better understand the usage of Bioinformatics packages on the UL HPC Platform.

Why Bioinformatics? 3Vs:
- very relevant in the context of the UL/LCSB
- very fast growing domain
- very many associated workflows, thus excellent examples

V. Plugaru and S. Peter (University of Luxembourg)
Objectives

Objective of this Session

Better understand the usage of Bioinformatics packages on the UL HPC Platform.

Why Bioinformatics? 3Vs:

- very relevant in the context of the UL/LCSB
- very fast growing domain
- very many associated workflows, thus excellent examples
Summary

1. Objectives

2. Bioinformatics packages

3. Notes

4. Practical session

5. Conclusion
Bioinformatics packages

ABySS

ABySS: Assembly By Short Sequences
a de novo, parallel, paired-end sequence assembler designed for short reads
ABySS: Assembly By Short Sequences
a de novo, parallel, paired-end sequence assembler designed for short reads

- several applications in the ABySS package
- only **ABYSS-P** is parallelized using MPI
 - started with the **abyss-pe** launcher
- workflow (pipeline) of **abyss-pe** also includes:
 - OpenMP-parallel applications
 - serial applications
- **Note:** compared with other de novo assemblers, the per-node memory requirements are smaller due to ABySS’ task distribution model
Bioinformatics packages

Gromacs

GROMACS: GROningen MAchine for Chemical Simulations
versatile package for molecular dynamics, primarily designed for biochemical molecules
GROMACS: GROningen MAchine for Chemical Simulations
versatile package for molecular dynamics, primarily designed for biochemical molecules

- very large codebase: 1.836.917 SLOC
- many applications in the package, several parallelization modes

mdrun: computational chemistry engine, performing:
- molecular dynamics simulations
- Brownian Dynamics, Langevin Dynamics
- Conjugate Gradient
- L-BFGS
- Steepest Descents energy minimization
- Normal Mode Analysis

mdrun - parallelized using MPI, OpenMP, pthreads and with support for GPU acceleration
Bioinformatics packages

Bowtie2/TopHat

Bowtie2: Fast and sensitive read alignment

 ultrafast & memory-efficient alignment of sequencing reads to long ref. sequences

TopHat: A fast spliced read mapper for RNA-Seq

 alignment of RNA-Seq reads to a genome, to identify exon-exon splice junctions
Bioinformatics packages

Bowtie2/TopHat

Bowtie2: Fast and sensitive read alignment
- ultrafast & memory-efficient alignment of sequencing reads to long ref. sequences

TopHat: A fast spliced read mapper for RNA-Seq
- alignment of RNA-Seq reads to a genome, to identify exon-exon splice junctions

- TopHat aligns reads to mammalian-sized genomes using Bowtie
- then analyzes the mapping results to identify splice junctions between exons
- *bowtie2* is OpenMP-parallel
- rest of workflow is sequential
mpiBLAST: Open-Source Parallel BLAST
parallel implementation of NCBI BLAST, scaling to hundreds of processors
mpiBLAST: Open-Source Parallel BLAST
parallel implementation of NCBI BLAST, scaling to hundreds of processors

- two main applications: `mpiblast` `mpiformatdb`
- requires (NCBI) substitution matrices and formatted BLAST databases
- the databases can be segmented
 - into as many segments as the number of cores that will be used when performing searches
 - or a multiple, in order to avoid load imbalance
- `mpiblast` requires ≥ 3 processes, 2 used for internal tasks
 - `mpirun -np 3 mpiblast [...]` only gives you one searcher process!
Notes

Summary

1. Objectives
2. Bioinformatics packages
3. Notes
4. Practical session
5. Conclusion
Notes

Notes.. on real world applications (bioinfo or others):

- make sure you *understand the parallel capabilities of your software*
 - pthreads/OpenMP vs MPI vs hybrid
 - use of GPU acceleration
.. on real world applications (bioinfo or others):

- make sure you **understand the parallel capabilities** of your software
 - pthreads/OpenMP vs MPI vs hybrid
 - use of GPU acceleration

- make sure you **request the appropriate resources** for the processing needs of your workflow
 - Does the software always take advantage of more than 1 core or node?
 - How does it scale? Many obstacles to perfect scalability!
.. on real world applications (bioinfo or others):

- make sure you *understand the parallel capabilities* of your software
 - pthreads/OpenMP vs MPI vs hybrid
 - use of GPU acceleration

- make sure you *request the appropriate resources* for the processing needs of your workflow
 - Does the software always take advantage of more than 1 core or node?
 - How does it scale? Many obstacles to perfect scalability!

.. on data management:

- make sure you *use the appropriate storage place*
 - $HOME vs $WORK vs $SCRATCH

- stage data in/out, archive your (many & unused) ‘small’ files
Summary

1. Objectives

2. Bioinformatics packages

3. Notes

4. Practical session

5. Conclusion
Read and understand the Bioinformatics tutorial
https://github.com/ULHPC/tutorials/tree/devel/advanced/Bioinformatics/

Run the examples
→ all calculations should be fast
→ you should attempt the exercises proposed in each section

Try even more tests, e.g.:
→ on different node classes
→ with one core per node on ≥ 2 nodes
→ vs ≥ 2 cores on single node
Summary

1. Objectives
2. Bioinformatics packages
3. Notes
4. Practical session
5. Conclusion
Conclusion

- Bioinformatics applications execution on the UL HPC Platform
- Outlined:
 - different workflows
 - some of the concepts you should care about when running complex software

Perspectives

- Personalize the UL HPC launchers with the specific commands for ABYSS, Gromacs, TopHat, Bowtie, mpiBLAST..
Thank you for your attention...

Questions?

http://hpc.uni.lu

The UL High Performance Computing (HPC) Team
University of Luxembourg, Belval Campus:
Maison du Nombre, 4th floor
2, avenue de l'Université
L-4365 Esch-sur-Alzette
mail: hpc@uni.lu

1 Objectives

2 Bioinformatics packages

3 Notes

4 Practical session

5 Conclusion