
My typical workflow

Jakub Muszyński

6th–7th May 2014

Computer Science and Communications (CSC) Research Unit

1 / 15
Jakub Muszyński (UL HPC School 2014) My typical workflow

N

My experiments

I am simulating a P2P protocol.

Executions are independent.

Each execution has a set of parameters:

network size — number of nodes in the network,
initialization — initial state of the network,
etc.

Each parameter has a different set of values:

network size: 500, 1000, . . . nodes,
etc.

For each combination of the parameters, I need X executions.

2 / 15
Jakub Muszyński (UL HPC School 2014) My typical workflow

N

Implementation

Done in Java — depends on the GraphStream1 library.

Remember about the proper settings of the Java Virtual Machine.

↪→ Especially: -d64 -Xms$memoryNeeded -Xmx$memoryNeeded

State is implemented.

Simple implementation of the Serializable interface.
Output is compressed (GZIP) on the application level.

1http://graphstream-project.org/

3 / 15
Jakub Muszyński (UL HPC School 2014) My typical workflow

N

http://graphstream-project.org/

Resources needed — example

Total number of executions can be huge:

parameters 1 and 2 have 5 values each,
parameter 3 has 10 values,
parameter 4 has 20 values,
parameter 5 has 2 values,
for each combination of parameters, I need 100 executions.

In total it gives: 1.000.000 independent executions.

Time required for a single execution:

from a few minutes to a couple of hours.

Memory (RAM):

up to 4 GB (depending on the problem size).

Input/Output operations:

state files,
final results.

4 / 15
Jakub Muszyński (UL HPC School 2014) My typical workflow

N

Batches

1 batch = 1 job

X executions grouped by the values of the parameters.

Created by the configuration script which:

creates a directory for the results (mkdir) of the batch:
./parameter1_value/parameter2_value/.../parameter5_value

puts there the application configuration, setting appropriate
parameters (cp and sed),
creates marker files (missing executions) (touch).

Executed using GNU Parallel2 — see PS2.

2http://www.gnu.org/software/parallel/

5 / 15
Jakub Muszyński (UL HPC School 2014) My typical workflow

N

http://www.gnu.org/software/parallel/

Queue

Depending on the current load of the platform:

default queue (many users/jobs) with state saving:

before the end of the walltime if the execution is not finished.

besteffort queue (few users/jobs) with state saving:

periodically (every X minutes)

↪→ internally implemented in the application.

before the end of the walltime if the execution is not finished.

6 / 15
Jakub Muszyński (UL HPC School 2014) My typical workflow

N

Default queue — oarsub options

-n $jobName

↪→ If you name the jobs, it is easier to manage them.

-t idempotent

↪→ Exit code equal to 99 ⇒ job is resubmitted with the same
parameters.

-l nodes=1,walltime=$hours

↪→ Bash variable hours is set depending on the problem size:

problemSize=‘echo $dir | sed ’s/.*networkSize\([0-9]*\).*/\1/’‘

hours="2"

if [$problemSize -ge 500]; then
hours="4"

fi

--checkpoint 900 --signal 12

↪→ 15 minutes before walltime ends, signal 12 (USR2) is sent.

7 / 15
Jakub Muszyński (UL HPC School 2014) My typical workflow

N

Besteffort queue — oarsub options

Differences:

Add: -t besteffort

Change the properties: -l nodes=1/cpu=1,walltime=$hours

8 / 15
Jakub Muszyński (UL HPC School 2014) My typical workflow

N

Job submision script (simplified)

1 Find all directories with missing executions:

missingDirs=‘find . -iname *.missing -printf "%h\n" | sort -u‘

2 For each directory:

Wait for the space in the queue (do not spam with too many jobs):

while [‘oarstat -u jmuszynski | wc -l‘ -ge 32]; do
echo "Waiting 10 minutes to free the queue..."

sleep 10m

done

Setup parameters for the oarsub — like the variable hours previously.
Submit the job:

oarsub <all_the_parameters_described_previously>

9 / 15
Jakub Muszyński (UL HPC School 2014) My typical workflow

N

1 Job = GNUParallel + checkpointing

Trap the checkpoint signal (defined previously in the oarsub):

CHKPNT_SIGNAL=12

EXIT_UNFINISHED=99

function checkpointAll {

do not start new jobs

kill -TERM $parallelPID

checkpoint running

for p in ‘ps -fujmuszynski | grep $application\

| grep $parallelPID | grep -v parallel\
| awk ’{ print $2 }’‘; do

kill -$CHKPNT_SIGNAL $p

done
wait to finish, quit

wait $parallelPID

exit $EXIT_UNFINISHED

}

trap "checkpointAll" $CHKPNT_SIGNAL

10 / 15
Jakub Muszyński (UL HPC School 2014) My typical workflow

N

GNUParallel

Run the parallel tasks:

parallel -j$jobsPossible $application {} ::: $testNumbers &

parallelPID=$!

11 / 15
Jakub Muszyński (UL HPC School 2014) My typical workflow

N

Besteffort jobs — WARNINGS

Besteffort jobs CAN BE KILLED AT ANY MOMENT!

You have to accept some loss of the CPU time.

↪→ Walltime should be SHORT if you do not have the state saving.

At ANY moment includes even the state saving!

↪→ Keep two versions of the state — previous and current.

12 / 15
Jakub Muszyński (UL HPC School 2014) My typical workflow

N

Besteffort jobs — WARNINGS

Abount the walltime & the number of jobs

HPC is a shared platform.

↪→ Use a common sense when submitting the jobs.
↪→ Limits are flexible, but avoid misuse.

Max Max number of
walltime active jobs per user

9000:00:00 1000

13 / 15
Jakub Muszyński (UL HPC School 2014) My typical workflow

N

HPC 6= PC
Which means, that you should monitor execution of your jobs
(https://hpc.uni.lu/status/ganglia.html). As:

Failures affect other users.

Performance issues also, especially:

I/O operations,
RAM usage.

14 / 15
Jakub Muszyński (UL HPC School 2014) My typical workflow

N

https://hpc.uni.lu/status/ganglia.html

Thank you!

15 / 15
Jakub Muszyński (UL HPC School 2014) My typical workflow

N

