

# UL HPC School 2017 PS4b: Debugging, profiling and performance analysis

UL High Performance Computing (HPC) Team

V. Plugaru

University of Luxembourg (UL), Luxembourg http://hpc.uni.lu



V. Plugaru (University of Luxembourg)

### Latest versions available on Github:



UL HPC tutorials: UL HPC School:

https://github.com/ULHPC/tutorials

http://hpc.uni.lu/hpc-school/

PS4b tutorial sources:

https://github.com/ULHPC/tutorials/tree/devel/advanced/debugging





2 / 21

V. Plugaru (University of Luxembourg)



Introduction

# Summary



2 Debugging and profiling tools





V. Plugaru (University of Luxembourg)

Introduction



# Main Objectives of this Session



This session is meant to show you some of the various tools you have at your disposal on the UL HPC platform to

### understand & solve problems

During the hands-on session you will:

- see what happens when an application runs out of memory and how to discover how much memory it actually requires.
- use debugging tools to understand why your code is crashing.
- use profiling tools to understand the (slow) performance of your code - and how to improve it.

# Knowing what to do when you experience a problem is half the battle.





# Summary









V. Plugaru (University of Luxembourg



# Tools at your disposal (I)

### Common tools used to understand problems

- Do you know what time it is?

   → /usr/bin/time -v is just magic sometimes
- Don't remember where you put things?
   → Valgrind can help with your memory issues
- Is your application firing on all cylinders?
  - $\hookrightarrow$  with **htop** green means go! (red is bad)
- Got stuck?
  - $\,\hookrightarrow\,$  strace can tell you where you are and how you got there

### Some times simple tools help you solve big issues.





# Tools at your disposal (II)

### **HPC** specific tools

Allinea DDT (part of Allinea Forge)

 → Visual debugger for C, C++ and Fortran threaded and // code

 Allinea MAP (part of Allinea Forge)

 → Visual C/C++/Fortran profiler for high performance Linux code

 Allinea Performance Reports

 → Application characterization tool





# Tools at your disposal (II)

### **HPC** specific tools

- Allinea DDT (part of Allinea Forge)
   → Visual debugger for C, C++ and Fortran threaded and // code
- Allinea MAP (part of Allinea Forge)
  - $\,\hookrightarrow\,$  Visual C/C++/Fortran profiler for high performance Linux code
- Allinea Performance Reports
  - $\,\hookrightarrow\,$  Application characterization tool

### Allinea tools are licensed

Make sure enough tokens available to profile/debug your code in the requested configuration (# cores)!

- $\,\hookrightarrow\,$  license check will be integrated in SLURM
- $\hookrightarrow$  ... so your jobs will be able to wait for it to be available



# Allinea DDT - highlights

### **DDT** features

- Parallel debugger: threads, OpenMP, MPI support
- Controls processes and threads

 $\hookrightarrow$  step code, stop on var. changes, errors, breakpoints

• Deep memory debugging

 $\,\hookrightarrow\,$  find memory leaks, dangling pointers, beyond-bounds access

- C++ debugging including STL
- Fortran including F90/F95/F2008 features
- See vars/arrays across multiple processes
- Integrated editing, building and VCS integration
- Offline mode for non-interactive debugging

 $\,\hookrightarrow\,$  record application behavior and state

Full details at allinea.com/products/ddt/features





# Allinea DDT - on ULHPC

### Modules

• On iris: module load tools/AllineaForge

- On gaia/chaos: module load Allinea/Forge
  - $\,\hookrightarrow\,$  we'll synchronize the software set to match iris soon

### Debugging with DDT





LUXEMBOUR 9 / 21



# Allinea DDT - interface

| Fig. Edt View Control Tools Window                                       | Halo             |                                        | Allinea                               | DDT - Allinea Fo    | rge 7.0.3 <@iris-053> |      |                       | <b>23</b> 8            |
|--------------------------------------------------------------------------|------------------|----------------------------------------|---------------------------------------|---------------------|-----------------------|------|-----------------------|------------------------|
|                                                                          |                  | m                                      |                                       |                     |                       |      |                       |                        |
|                                                                          | Int & Group C    | Property C Thread C Star Three         |                                       |                     |                       |      |                       |                        |
|                                                                          |                  |                                        | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 2 (52) (57) (57) (5 | N [52] [52] [52] [53] |      |                       |                        |
| Create Group                                                             |                  |                                        | TO THE TO TO TA TO TO                 |                     | 0 24 20 20 27         |      |                       |                        |
| Project Bles #X                                                          | Contartenei e 🖸  | ci -                                   |                                       |                     |                       |      | Locals   Dirrect line | (a) ]. Current Stack ] |
| Search (Chilak)                                                          | · Ustaturigent 🔼 | 1                                      |                                       |                     |                       |      | Locals                | ex   conercacack       |
|                                                                          | 82 1             | Pl_Status status; /* Petur             | n status for receive */               |                     |                       | -    | Variable Name         | Value                  |
| func10   void                                                            | ▲ 84 t           | <pre>2 = malloc(sizeof(typeThree</pre> | )];                                   |                     |                       |      | -argc                 | 1                      |
| - • func20 : int                                                         | . 05 f           | or (p=0;p<100;p++)                     |                                       |                     |                       |      | -beingWatched         | 0                      |
| - e main(int argc, char++                                                | 89               | bigArray[p]=80000+p;                   |                                       |                     |                       |      | ⊕ bigArray            | 104005500              |
| <ul> <li>print_arg[const char*</li> <li>print_arg[const char*</li> </ul> | 89               | Pl_Init(Garge, Gargv);                 | for and le                            |                     |                       |      | e dynamicArray        |                        |
| <ul> <li>typeThree</li> </ul>                                            | 91               | PI_Com_size[MPI_COMM_WORLD             | , 6p1;                                |                     |                       |      | @ environ             | 0x700008f38            |
| - Cyperwo                                                                | 92<br>93 d       | vnamicArray = mallocisizeof            | (int)*100000):                        |                     |                       |      | -message              |                        |
| a = 1                                                                    | 94 5             | dim = malloc(sizeof(int) *             | pl;                                   |                     |                       |      | -my_rank              | 28                     |
| B I Sources                                                              | 96 B f           | or(x=0;x<10000;x++)                    |                                       |                     |                       |      | 0.5                   | Cx.D                   |
| dwtc3.c                                                                  | 97 1             | dynamicArray[x] = x510;                |                                       |                     |                       |      | e source              |                        |
| - M powtf2.c                                                             | 99 }             |                                        |                                       |                     |                       |      | 🔅 status              |                        |
| - (#) abort.c                                                            | 101 p            | rintf('my rank is Ad\n', my            | _nank);                               |                     |                       |      | e tables              |                        |
| - M accumulate.c                                                         | 102<br>103 H f   | or(x=0:x<12:x++)                       |                                       |                     |                       |      | -tag                  |                        |
| - I accumulate_cdesc.c                                                   | 104 {            | x = 0:                                 |                                       |                     |                       |      | ⊕ troopa              |                        |
| - Ma ad_aggregate.c                                                      | 106 8            | while(y != 12)                         |                                       |                     |                       |      | CX .                  | °                      |
| - 10 ad_aggregate_new.c                                                  | 107              | tables[x][y] = (x+1)                   | *(v+1):                               |                     |                       |      | 11                    |                        |
| - M ad_coll_build_req_new.c                                              | 0 169            | y += my rank + 1;                      | 177 and the second second second the  |                     |                       | _    |                       |                        |
| - 10 ad_col_exch_new.c                                                   | 111 }            | ,                                      | Add tracepting for All figures of     | ank)                |                       |      |                       |                        |
| - I ad_delete.c                                                          | 112              | f(argc > 1 66 my rank == 0)            |                                       |                     |                       |      |                       |                        |
| - R ad_done_fake.c                                                       | 114 {            |                                        | Delete breakpoint for All             |                     |                       |      |                       |                        |
| - 10 ad end.c                                                            | 116              | printf("They are:\n");                 | e ot breakpoint for set               |                     |                       | *1   |                       |                        |
|                                                                          | 119              | forfuelt untract tak!                  | Pun to here                           |                     |                       |      | Type: none selected   |                        |
| Input/Output Breakpoints Watchpoil                                       | nts Stacks       | Tracepoints Tracepoint Output          | Undo                                  |                     |                       | 5    | Valuate               | 8 ×                    |
| Watchpoints                                                              |                  |                                        | Bado                                  |                     |                       | - #× | Expression Value      |                        |
| Processes Scope Express                                                  | on (Trigger (    | in impremented in                      |                                       |                     |                       |      |                       |                        |
| e no main dynamic                                                        | erray write on   | ry riardinarë                          | Copy                                  |                     |                       |      |                       |                        |
|                                                                          |                  |                                        | Dekte                                 |                     |                       |      |                       |                        |
|                                                                          |                  |                                        | Select All                            |                     |                       |      |                       |                        |
|                                                                          |                  |                                        | Open in external editor               |                     |                       |      |                       |                        |
| 1                                                                        |                  |                                        | Close                                 | Ctrl+W              |                       |      |                       |                        |
|                                                                          |                  |                                        |                                       |                     |                       |      |                       |                        |



UNIVERSITÉ DU

10 / 21

.



# Allinea MAP - highlights

### **MAP** features

- Meant to show developers where&why code is losing perf.
- Parallel profiler, especially made for MPI applications
- Effortless profiling
  - $\,\hookrightarrow\,$  no code modifications needed, may not even need to recompile
- Clear view of bottlenecks
  - $\,\hookrightarrow\,$  in I/O, compute, thread or multi-process activity
- Deep insight in CPU instructions affecting perf.
   → vectorization and memory bandwidth
- Memory usage over time see changes in memory footprint
- Integrated editing and building as for DDT

Full details at allinea.com/products/map/features



11 / 21



# Allinea MAP - on ULHPC

### Modules

- On iris: module load tools/AllineaForge
- On gaia/chaos: module load Allinea/Forge

### Profiling with MAP







# Allinea MAP - interface

| N. Contraction of the second se | osu alitoaliv 28p 1n 2017-06+11 21+31.map - Allinea MAP - Allinea Forge 7.0.3 <@iris+0                                           | )53>     | E 31 X                                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------|----------------------------------------------------|
| Ele Edit View Metrics W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ndow (Help<br>Income Lands, Samplet from Sin An 11 2017 21:31:07.0 (France) for 9 Se                                             |          | Lide Metrice                                       |
| Main thread artikity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                  |          |                                                    |
| Main Cireau accivicy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                  |          |                                                    |
| CPU floating-point                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10                                                                                                                               |          |                                                    |
| 0.%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                  |          |                                                    |
| Memory usage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                  |          |                                                    |
| 117 MB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                  |          |                                                    |
| 21:31:12-21:31:13 (0.832s,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9.8% of total): Main thread compute 0.0 %, MM 99.8%, Skeping 0.2%                                                                |          | Zoom 📲 🎟 💿                                         |
| 🗴 osu_alkoalko 🔯 🛛 🗴                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | osu_colic 🗉                                                                                                                      |          | Time spent on line 128 Ø ×                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 107 H if(size > LAPGE_MESSAGE_SIZE) ()                                                                                           | ×        | Breakdown of the 67.4% time<br>spent on this line: |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | disp =0;                                                                                                                         |          | Executing instructions 0.0%                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                  |          | Calling other functions 100.0%                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                  |          |                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | for(i = 0) i < options.iterations + options.skip; i++) (                                                                         |          |                                                    |
| (7) (A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                  |          |                                                    |
| 07.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 120 PL ACCENTISATION AND ANTIONIS, PARADON, PL CHEN, PACHOL, PACHOL, PLANES, PL CHEN,<br>120 MPL COMP, MCR.D);                   |          |                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 130 t_stop = MPI_wtime();                                                                                                        |          |                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | is if(imoptions.skip)                                                                                                            |          |                                                    |
| 1.35 .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 137 PPE_Barrier(PPE_CDMP_WDPLD);<br>138 )                                                                                        |          |                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <pre>140 latency = (double)(timer * la6) / options.iterations;</pre>                                                             |          |                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 141<br>142 MPT_Reduce(&latency, Emin_time, 1, MPT_DOLBLE, MPT_MIN, 0,                                                            |          |                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 143 MPT_Deduce(Statency, Emax_time, 1, MPT_DOLBLE, MPT_MAX, 0,<br>144 MPT_Beduce(Statency, Emax_time, 1, MPT_DOLBLE, MPT_MAX, 0, |          |                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 145 PPT COMPARED;                                                                                                                | <u>×</u> |                                                    |
| Input/Output   Project File                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | s Main Thread Stacks Functions                                                                                                   |          |                                                    |
| Nain Thread Stacks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                  |          | 8×                                                 |
| Total core time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | V [MP] Function(s) on the                                                                                                        |          |                                                    |
| 67.4%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 67.4% MethyAltoolay                                                                                                              |          |                                                    |
| 1.3%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.3% MP[Barrier                                                                                                                  |          |                                                    |
| <0.1%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | i fore buffer                                                                                                                    |          |                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Broundap                                                                                                                         |          |                                                    |
| <0.1%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                  |          |                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                  |          |                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                  |          |                                                    |
| Showing data from 1.176 sa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mples taken over 28 processes (42 per process)                                                                                   |          | Allinea Force 7.0.3 2 Main Thread Vew              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                  |          | uni.                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                  |          | UNIVERSITÉ                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                  |          | LUXEMBOU                                           |

13 / 21



# Allinea Perf. Reports - highlights

### **Performance Reports features**

- Meant to answer How well do your apps. exploit your hw.?
- Easy to use, on unmodified applications
  - $\hookrightarrow$  outputs HTML, text, CSV, JSON reports
- One-glance view if application is:
  - $\hookrightarrow$  well-optimized for the underlying hardware
  - $\,\hookrightarrow\,$  running optimally at the given scale
  - $\,\hookrightarrow\,$  affected by I/O, networking or threading bottlenecks
- Easy to integrate with continuous testing
  - $\hookrightarrow$  programatically improve performance by continuous profiling
- Energy metric integrated
  - $\hookrightarrow$  using RAPL (CPU) for now on iris
  - $\,\hookrightarrow\,$  IPMI-based monitoring may be added later

Full details at allinea.com/products/allinea-performance-reports





UL HPC School 2017



# Allinea Perf. Reports - on ULHPC

### Modules

- On iris: module load tools/AllineaReports
- On gaia/chaos: module load Allinea/Reports

### **Using Performance Reports**







# Allinea Perf. Reports - output (I)



srun gmx, mpi mdrun -s bench\_mase\_cubic.tpr -nsteps 10000 1 node (28 physical, 28 logical cores per node) 126 GiB per node 28 processes, OME\_NUM\_THREADS was 0 1ris-053 Sun Jun 11 2017 20:13:59 (UTC+02) 19 seconds mmt/risgt/saps/rself/data/moduction/v0 1-20170602// default/software/bio/GROMACS/2016.3-intel-2017a-hybrid/ bin



Summary: gmx\_mpi is Compute-bound in this configuration



Time spent running application code. High values are usually good. This is average; check the CPU performance section for advice

Time spent in MPI calls. High values are usually bad. This is **average**; check the MPI breakdown for advice on reducing it

Time spent in filesystem I/O. High values are usually bad. This is **negligible**; there's no need to investigate I/O performance

This application run was Compute-bound. A breakdown of this time and advice for investigating further is in the CPU section below.

#### CPU

| A breakdown of th  | e 54.6% | 6 CPU time: |
|--------------------|---------|-------------|
| Single-core code   | 5.5%    | 1           |
| OpenMP regions     | 94.5%   |             |
| Scalar numeric ops | 5.2%    | 1           |
| Vector numeric ops | 44.2%   |             |
| Memory accesses    | 50.6%   |             |

The per-core performance is memory-bound. Use a profiler to identify timeconsuming loops and check their cache performance.

#### MPI



Most of the time is spent in point-to-point calls with an average transfer rate. Using larger messages and overlapping communication and computation may increase the effective transfer rate.







# Allinea Perf. Reports - output (II)

| A breakdown of | the 54. | .6% C | PU time: |
|----------------|---------|-------|----------|
|----------------|---------|-------|----------|

| Single-core code   | 5.5%  | 1 |
|--------------------|-------|---|
| OpenMP regions     | 94.5% |   |
| Scalar numeric ops | 5.2%  | 1 |
| Vector numeric ops | 44.2% |   |
| Memory accesses    | 50.6% |   |

#### A breakdown of the 45.4% MPI time:

| Time in collective calls              | 33.5%    |  |
|---------------------------------------|----------|--|
| Time in point-to-point calls          | 66.5%    |  |
| Effective process collective rate     | 426 MB/s |  |
| Effective process point-to-point rate | 419 MB/s |  |

Most of the time is spent in point-to-point calls with an average transfer rate. Using larger messages and overlapping communication and computation may increase the effective transfer rate.

The per-core performance is memory-bound. Use a profiler to identify timeconsuming loops and check their cache performance.

A breakdown of the 0.0% I/O time: Time in reads 0.0%

| Time in writes               | 0.0%         | i. |
|------------------------------|--------------|----|
| Effective process read rate  | 0.00 bytes/s | I. |
| Effective process write rate | 0.00 bytes/s | T. |

No time is spent in I/O operations. There's nothing to optimize here!

#### Memory

Per-process memory usage may also affect scaling:

Mean process memory usage 75.6 MiB Peak process memory usage 86. Peak node memory usage

| 0 11110 |   |
|---------|---|
| 6 MiB   |   |
| 1.0%    | 1 |

The peak node memory usage is very low. Running with fewer MPI processes and more data on each process may be more efficient.

#### OpenMP

A breakdown of the 94.5% time in OpenMP regions:

| Computation               | 99.5%  |   |
|---------------------------|--------|---|
| Synchronization           | 0.5%   | 1 |
| Physical core utilization | 100.0% |   |
| System load               | 101.9% |   |

OpenMP thread performance looks good. Check the CPU breakdown for advice on improving code efficiency.

#### Energy

A breakdown of how the 0.899 Wh was used:

| CPU             | 100.0%          |   |
|-----------------|-----------------|---|
| System          | not supported % | 1 |
| Mean node power | not supported W | 1 |
| Peak node power | not supported W | 1 |

The whole system energy has been calculated using the CPU energy usage.

System power metrics: No Allinea IPMI Energy Agent config file found in (null). Did you start the Allinea IPMI Energy Agent?



UL HPC School 2017



# Summary



2 Debugging and profiling tools





V. Plugaru (University of Luxembourg)

UL HPC School 2017

.



# Now it's up to you

Easy right?



V. Plugaru (University of Luxembourg)



# Now it's up to you

Easy right?

### Well not exactly.



V. Plugaru (University of Luxembourg)



## Now it's up to you

Easy right?

### Well not exactly. Debugging always takes effort and real applications are never trivial.



V. Plugaru (University of Luxembourg)



## Now it's up to you

### Easy right?

### Well not exactly. Debugging always takes effort and real applications are never trivial.

But we do guarantee it'll be /easier/ with these tools.



UL HPC School 2017

▲



# **Conclusion and Practical Session start**

### We've discussed

- A couple of small utilities that can be of big help
- The Allinea tools available for you on UL HPC

And now..

### Short DEMO time!





# **Conclusion and Practical Session start**

### We've discussed

- A couple of small utilities that can be of big help
- The Allinea tools available for you on UL HPC

### And now..

### Short DEMO time!

Your Turn!



V. Plugaru (University of Luxembourg)



Thank you for your attention...

# **Questions?**

http://hpc.uni.lu

### The UL High Performance Computing (HPC) Team

University of Luxembourg, Belval Campus: Maison du Nombre, 4th floor 2, avenue de l'Université L-4365 Esch-sur-Alzette mail: hpc@uni.lu





2 Debugging and profiling tools





21 / 21

V. Plugaru (University of Luxembourg)