
UL HPC School 2017
PS4b: Debugging, profiling and

performance analysis

UL High Performance Computing (HPC) Team

V. Plugaru

University of Luxembourg (UL), Luxembourg

http://hpc.uni.lu

1 / 21
V. Plugaru (University of Luxembourg) UL HPC School 2017

N

https://hpc.uni.lu/hpc-school/
http://www.uni.lu
http://hpc.uni.lu
https://hpc.uni.lu/hpc-school/

Latest versions available on Github:

UL HPC tutorials: https://github.com/ULHPC/tutorials

UL HPC School: http://hpc.uni.lu/hpc-school/

PS4b tutorial sources:
https://github.com/ULHPC/tutorials/tree/devel/advanced/debugging

2 / 21
V. Plugaru (University of Luxembourg) UL HPC School 2017

N

https://github.com/ULHPC/
https://github.com/ULHPC/tutorials
http://hpc.uni.lu/hpc-school/
https://github.com/ULHPC/tutorials/tree/devel/advanced/debugging
https://hpc.uni.lu/hpc-school/

Introduction

Summary

1 Introduction

2 Debugging and profiling tools

3 Conclusion

3 / 21
V. Plugaru (University of Luxembourg) UL HPC School 2017

N

https://hpc.uni.lu/hpc-school/

Introduction

Main Objectives of this Session

Theorize
Model
Develop

Compute
Simulate
Experiment

Analyze

This session is meant to show you some of the various tools
you have at your disposal on the UL HPC platform to

understand & solve problems

During the hands-on session you will:
see what happens when an application runs out of
memory and how to discover how much memory it
actually requires.

use debugging tools to understand why your code is
crashing.

use profiling tools to understand the (slow) performance
of your code - and how to improve it.

Knowing what to do when you experience a problem
is half the battle.

4 / 21
V. Plugaru (University of Luxembourg) UL HPC School 2017

N

https://hpc.uni.lu/hpc-school/

Debugging and profiling tools

Summary

1 Introduction

2 Debugging and profiling tools

3 Conclusion

5 / 21
V. Plugaru (University of Luxembourg) UL HPC School 2017

N

https://hpc.uni.lu/hpc-school/

Debugging and profiling tools

Tools at your disposal (I)

Common tools used to understand problems

Do you know what time it is?
→֒ /usr/bin/time -v is just magic sometimes

Don’t remember where you put things?
→֒ Valgrind can help with your memory issues

Is your application firing on all cylinders?
→֒ with htop green means go! (red is bad)

Got stuck?
→֒ strace can tell you where you are and how you got there

Some times simple tools help you solve big issues.

6 / 21
V. Plugaru (University of Luxembourg) UL HPC School 2017

N

https://hpc.uni.lu/hpc-school/

Debugging and profiling tools

Tools at your disposal (II)

HPC specific tools

Allinea DDT (part of Allinea Forge)
→֒ Visual debugger for C, C++ and Fortran threaded and // code

Allinea MAP (part of Allinea Forge)
→֒ Visual C/C++/Fortran profiler for high performance Linux code

Allinea Performance Reports
→֒ Application characterization tool

7 / 21
V. Plugaru (University of Luxembourg) UL HPC School 2017

N

https://hpc.uni.lu/hpc-school/

Debugging and profiling tools

Tools at your disposal (II)

HPC specific tools

Allinea DDT (part of Allinea Forge)
→֒ Visual debugger for C, C++ and Fortran threaded and // code

Allinea MAP (part of Allinea Forge)
→֒ Visual C/C++/Fortran profiler for high performance Linux code

Allinea Performance Reports
→֒ Application characterization tool

Allinea tools are licensed

Make sure enough tokens available to profile/debug your code in the re-
quested configuration (#cores)!

→֒ license check will be integrated in SLURM

→֒ ... so your jobs will be able to wait for it to be available

7 / 21
V. Plugaru (University of Luxembourg) UL HPC School 2017

N

https://hpc.uni.lu/hpc-school/

Debugging and profiling tools

Allinea DDT - highlights

DDT features

Parallel debugger: threads, OpenMP, MPI support
Controls processes and threads

→֒ step code, stop on var. changes, errors, breakpoints

Deep memory debugging
→֒ find memory leaks, dangling pointers, beyond-bounds access

C++ debugging – including STL
Fortran – including F90/F95/F2008 features
See vars/arrays across multiple processes
Integrated editing, building and VCS integration
Offline mode for non-interactive debugging

→֒ record application behavior and state

Full details at allinea.com/products/ddt/features

8 / 21
V. Plugaru (University of Luxembourg) UL HPC School 2017

N

allinea.com/products/ddt/features
https://hpc.uni.lu/hpc-school/

Debugging and profiling tools

Allinea DDT - on ULHPC

Modules

On iris: module load tools/AllineaForge

On gaia/chaos: module load Allinea/Forge

→֒ we’ll synchronize the software set to match iris soon

Debugging with DDT

11 Load toolchain, e.g.
→֒ iris: module load toolchain/intel

→֒ gaia/chaos: module load toolchain/ictce

22 Compile your code, e.g. mpiicc $code.c -o $app

33 Run your code through DDT
→֒ iris: ddt srun ./$app

→֒ gaia/chaos: ddt mpirun -hostfile $OAR_NODEFILE ./$app

9 / 21
V. Plugaru (University of Luxembourg) UL HPC School 2017

N

https://hpc.uni.lu/hpc-school/

Debugging and profiling tools

Allinea DDT - interface

10 / 21
V. Plugaru (University of Luxembourg) UL HPC School 2017

N

https://hpc.uni.lu/hpc-school/

Debugging and profiling tools

Allinea MAP - highlights

MAP features

Meant to show developers where&why code is losing perf.
Parallel profiler, especially made for MPI applications
Effortless profiling

→֒ no code modifications needed, may not even need to recompile

Clear view of bottlenecks
→֒ in I/O, compute, thread or multi-process activity

Deep insight in CPU instructions affecting perf.
→֒ vectorization and memory bandwidth

Memory usage over time – see changes in memory footprint
Integrated editing and building as for DDT

Full details at allinea.com/products/map/features

11 / 21
V. Plugaru (University of Luxembourg) UL HPC School 2017

N

allinea.com/products/map/features
https://hpc.uni.lu/hpc-school/

Debugging and profiling tools

Allinea MAP - on ULHPC

Modules

On iris: module load tools/AllineaForge

On gaia/chaos: module load Allinea/Forge

Profiling with MAP

11 Load toolchain that built your app., e.g.
→֒ iris: module load toolchain/intel

→֒ gaia/chaos: module load toolchain/ictce

22 Run your code through MAP
→֒ iris: map srun ./$app

→֒ gaia/chaos: map mpirun -hostfile $OAR_NODEFILE ./$app

12 / 21
V. Plugaru (University of Luxembourg) UL HPC School 2017

N

https://hpc.uni.lu/hpc-school/

Debugging and profiling tools

Allinea MAP - interface

13 / 21
V. Plugaru (University of Luxembourg) UL HPC School 2017

N

https://hpc.uni.lu/hpc-school/

Debugging and profiling tools

Allinea Perf. Reports - highlights

Performance Reports features

Meant to answer How well do your apps. exploit your hw.?
Easy to use, on unmodified applications

→֒ outputs HTML, text, CSV, JSON reports

One-glance view if application is:
→֒ well-optimized for the underlying hardware
→֒ running optimally at the given scale
→֒ affected by I/O, networking or threading bottlenecks

Easy to integrate with continuous testing
→֒ programatically improve performance by continuous profiling

Energy metric integrated
→֒ using RAPL (CPU) for now on iris
→֒ IPMI-based monitoring may be added later

Full details at allinea.com/products/allinea-performance-reports

14 / 21
V. Plugaru (University of Luxembourg) UL HPC School 2017

N

allinea.com/products/allinea-performance-reports
https://hpc.uni.lu/hpc-school/

Debugging and profiling tools

Allinea Perf. Reports - on ULHPC

Modules

On iris: module load tools/AllineaReports

On gaia/chaos: module load Allinea/Reports

Using Performance Reports

11 Load toolchain that you run your app. with, e.g.
→֒ iris: module load toolchain/intel

→֒ gaia/chaos: module load toolchain/ictce

22 Run your application through Perf. Reports
→֒ iris: perf-report srun ./$app

→֒ gaia/chaos: perf-report mpirun -hostfile $OAR_NODEFILE

./$app

15 / 21
V. Plugaru (University of Luxembourg) UL HPC School 2017

N

https://hpc.uni.lu/hpc-school/

Debugging and profiling tools

Allinea Perf. Reports - output (I)

16 / 21
V. Plugaru (University of Luxembourg) UL HPC School 2017

N

https://hpc.uni.lu/hpc-school/

Debugging and profiling tools

Allinea Perf. Reports - output (II)

17 / 21
V. Plugaru (University of Luxembourg) UL HPC School 2017

N

https://hpc.uni.lu/hpc-school/

Conclusion

Summary

1 Introduction

2 Debugging and profiling tools

3 Conclusion

18 / 21
V. Plugaru (University of Luxembourg) UL HPC School 2017

N

https://hpc.uni.lu/hpc-school/

Conclusion

Now it’s up to you

Easy right?

19 / 21
V. Plugaru (University of Luxembourg) UL HPC School 2017

N

https://hpc.uni.lu/hpc-school/

Conclusion

Now it’s up to you

Easy right?

Well not exactly.

19 / 21
V. Plugaru (University of Luxembourg) UL HPC School 2017

N

https://hpc.uni.lu/hpc-school/

Conclusion

Now it’s up to you

Easy right?

Well not exactly.
Debugging always takes effort and real applications are

never trivial.

19 / 21
V. Plugaru (University of Luxembourg) UL HPC School 2017

N

https://hpc.uni.lu/hpc-school/

Conclusion

Now it’s up to you

Easy right?

Well not exactly.
Debugging always takes effort and real applications are

never trivial.

But we do guarantee it’ll be /easier/ with these tools.

19 / 21
V. Plugaru (University of Luxembourg) UL HPC School 2017

N

https://hpc.uni.lu/hpc-school/

Conclusion

Conclusion and Practical Session start

We’ve discussed

A couple of small utilities that can be of big help
The Allinea tools available for you on UL HPC

And now..

Short DEMO time!

20 / 21
V. Plugaru (University of Luxembourg) UL HPC School 2017

N

https://hpc.uni.lu/hpc-school/

Conclusion

Conclusion and Practical Session start

We’ve discussed

A couple of small utilities that can be of big help
The Allinea tools available for you on UL HPC

And now..

Short DEMO time!

Your Turn!

20 / 21
V. Plugaru (University of Luxembourg) UL HPC School 2017

N

https://hpc.uni.lu/hpc-school/

Thank you for your attention...

Questions? http://hpc.uni.lu

The UL High Performance Computing (HPC) Team
University of Luxembourg, Belval Campus:
Maison du Nombre, 4th floor
2, avenue de l’Université
L-4365 Esch-sur-Alzette
mail: hpc@uni.lu

1 Introduction

2 Debugging and profiling tools

3 Conclusion

21 / 21
V. Plugaru (University of Luxembourg) UL HPC School 2017

N

http://hpc.uni.lu
mailto:hpc@uni.lu
https://hpc.uni.lu/hpc-school/

	Introduction
	Debugging and profiling tools
	Conclusion

